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Problem 1. Compute the radii of convergence of the following power series:

(a)
∞∑
n=0

anzn
2

(b)
∞∑
n=1

n2anzn
2−1,

where a ∈ C and a 6= 0.

Proof. (a)
1

R
= lim sup

n→∞
|an|1/n2

= lim sup
n→∞

|a|1/n = |a|0 = 1.

So R = 1.
(b) By Proposition 2.5 a) in Conway, this power series has the same radius of convergence
as the one above. So R = 1 in this case too.

Problem 2. Let S(z) be a Möbius transformation such that S maps lines in C to lines.
Determine all such S(z) that also have k fixed points in C, where

(a)k ≥ 2 (b)k = 1 (c)k = 0.

Proof. We know that Möbius transformations map circles in C∞ to circles in C∞. A line in
C is the same as a circle in C∞ that passes through ∞. So we want to look at all Möbius
transformations S that send circles through ∞ to circles through ∞. We claim that this is
same as saying that S(∞) =∞. Suppose not. Let S be a Möbius transformation that sends
lines to lines, but with S(∞) = c 6=∞. Look at a very small ball B around∞. This maps to
a small ball around c. Choose B small enough such that the ball around c does not contain
∞. Then any circle inside B that passes through ∞ (i.e a line) maps to a circle inside the
ball around c which cannot be a line as it does not pass through ∞.

Now note that if S(z) = az+b
cz+d

, then S(∞) = ∞ iff c = 0. But if c = 0, we know that

d 6= 0 as ad − bc 6= 0. So just to make our notation simpler, we replace a
d

by a and b
d

by b.
So we can write S(z) = az + b with a 6= 0.
(a) If S has at least 2 fixed points in C, then it has at least 3 fixed points in C∞ (including
∞) and hence it is the identity.
(b) Suppose it has 1 fixed point. Then S(w) = w for some w ∈ C, i.e. (a−1)w+ b = 0. Now
this has a unique solution iff a 6= 1. So S(z) = az + b has exactly one fixed point iff a 6= 1.
(c) S doesn’t have any fixed point if (a− 1)z + b = 0 has no solutions in C. This happens iff
a = 1 and b 6= 0, i.e. S is a translation.
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Problem 3. Let (X, d), (Ω, p) be metric spaces, and G ⊂ X,∆ ⊂ Ω open subsets. A map
f : G→ ∆ is called proper if f−1(K) ⊂ G is compact for every compact K ∈ ∆. (The empty
set is compact.) Suppose that f : G → ∆ is continuous and its restriction to G is a proper
map G→ ∆. Show that f(∂G) ⊂ ∂∆.

Proof. If ∂G = ∅, we are done trivially. Suppose not. Let x ∈ ∂G. Suppose that y = f(x)
and y 6∈ ∂∆. Choose a sequence {xn} in G converging to x. Then f(xn)→ y. Also, f(xn) ∈ ∆
for all n. Let us denote by S the set {y, f(xn) : n ≥ 1}. Then S is compact and S ⊂ ∆. Then
(f |G)−1(S) is also compact as f |G is proper. But {xn} ⊂ (f |G)−1(S), but x 6∈ (f |G)−1(S)
which means that it cannot be compact. So f(x) ∈ ∂∆. This completes the proof.

2


