Solutions to Midterm Exam

Nandagopal Ramachandran

November 15, 2019

Problem 1. Compute the radii of convergence of the following power series:

$$
\text { (a) } \sum_{n=0}^{\infty} a^{n} z^{n^{2}} \quad \text { (b) } \sum_{n=1}^{\infty} n^{2} a^{n} z^{n^{2}-1}
$$

where $a \in \mathbb{C}$ and $a \neq 0$.
Proof. (a)

$$
\frac{1}{R}=\limsup _{n \rightarrow \infty}\left|a^{n}\right|^{1 / n^{2}}=\limsup _{n \rightarrow \infty}|a|^{1 / n}=|a|^{0}=1
$$

So $R=1$.
(b) By Proposition 2.5 a) in Conway, this power series has the same radius of convergence as the one above. So $R=1$ in this case too.

Problem 2. Let $S(z)$ be a Möbius transformation such that S maps lines in \mathbb{C} to lines. Determine all such $S(z)$ that also have k fixed points in \mathbb{C}, where

$$
(a) k \geq 2 \quad(b) k=1 \quad(c) k=0
$$

Proof. We know that Möbius transformations map circles in \mathbb{C}_{∞} to circles in \mathbb{C}_{∞}. A line in \mathbb{C} is the same as a circle in \mathbb{C}_{∞} that passes through ∞. So we want to look at all Möbius transformations S that send circles through ∞ to circles through ∞. We claim that this is same as saying that $S(\infty)=\infty$. Suppose not. Let S be a Möbius transformation that sends lines to lines, but with $S(\infty)=c \neq \infty$. Look at a very small ball B around ∞. This maps to a small ball around c. Choose B small enough such that the ball around c does not contain ∞. Then any circle inside B that passes through ∞ (i.e a line) maps to a circle inside the ball around c which cannot be a line as it does not pass through ∞.

Now note that if $S(z)=\frac{a z+b}{c z+d}$, then $S(\infty)=\infty$ iff $c=0$. But if $c=0$, we know that $d \neq 0$ as $a d-b c \neq 0$. So just to make our notation simpler, we replace $\frac{a}{d}$ by a and $\frac{b}{d}$ by b. So we can write $S(z)=a z+b$ with $a \neq 0$.
(a) If S has at least 2 fixed points in \mathbb{C}, then it has at least 3 fixed points in \mathbb{C}_{∞} (including $\infty)$ and hence it is the identity.
(b) Suppose it has 1 fixed point. Then $S(w)=w$ for some $w \in \mathbb{C}$, i.e. $(a-1) w+b=0$. Now this has a unique solution iff $a \neq 1$. So $S(z)=a z+b$ has exactly one fixed point iff $a \neq 1$. (c) S doesn't have any fixed point if $(a-1) z+b=0$ has no solutions in \mathbb{C}. This happens iff $a=1$ and $b \neq 0$, i.e. S is a translation.

Problem 3. Let $(X, d),(\Omega, p)$ be metric spaces, and $G \subset X, \Delta \subset \Omega$ open subsets. A map $f: G \rightarrow \Delta$ is called proper if $f^{-1}(K) \subset G$ is compact for every compact $K \in \Delta$. (The empty set is compact.) Suppose that $f: \bar{G} \rightarrow \bar{\Delta}$ is continuous and its restriction to G is a proper map $G \rightarrow \Delta$. Show that $f(\partial G) \subset \partial \Delta$.

Proof. If $\partial G=\emptyset$, we are done trivially. Suppose not. Let $x \in \partial G$. Suppose that $y=f(x)$ and $y \notin \partial \Delta$. Choose a sequence $\left\{x_{n}\right\}$ in G converging to x. Then $f\left(x_{n}\right) \rightarrow y$. Also, $f\left(x_{n}\right) \in \Delta$ for all n. Let us denote by S the set $\left\{y, f\left(x_{n}\right): n \geq 1\right\}$. Then S is compact and $S \subset \Delta$. Then $\left(\left.f\right|_{G}\right)^{-1}(S)$ is also compact as $\left.f\right|_{G}$ is proper. But $\left\{x_{n}\right\} \subset\left(\left.f\right|_{G}\right)^{-1}(S)$, but $x \notin\left(\left.f\right|_{G}\right)^{-1}(S)$ which means that it cannot be compact. So $f(x) \in \partial \Delta$. This completes the proof.

