Solutions to Midterm Exam

Nandagopal Ramachandran

November 15, 2019

Problem 1. Compute the radii of convergence of the following power series:

(a)
$$\sum_{n=0}^{\infty} a^n z^{n^2}$$
 (b) $\sum_{n=1}^{\infty} n^2 a^n z^{n^2-1}$,

where $a \in \mathbb{C}$ and $a \neq 0$.

Proof. (a)

$$\frac{1}{R} = \limsup_{n \to \infty} |a^n|^{1/n^2} = \limsup_{n \to \infty} |a|^{1/n} = |a|^0 = 1.$$

So R = 1.

(b) By Proposition 2.5 a) in Conway, this power series has the same radius of convergence as the one above. So R = 1 in this case too.

Problem 2. Let S(z) be a Möbius transformation such that S maps lines in \mathbb{C} to lines. Determine all such S(z) that also have k fixed points in \mathbb{C} , where

$$(a)k \ge 2 \qquad (b)k = 1 \qquad (c)k = 0$$

Proof. We know that Möbius transformations map circles in \mathbb{C}_{∞} to circles in \mathbb{C}_{∞} . A line in \mathbb{C} is the same as a circle in \mathbb{C}_{∞} that passes through ∞ . So we want to look at all Möbius transformations S that send circles through ∞ to circles through ∞ . We claim that this is same as saying that $S(\infty) = \infty$. Suppose not. Let S be a Möbius transformation that sends lines to lines, but with $S(\infty) = c \neq \infty$. Look at a very small ball B around ∞ . This maps to a small ball around c. Choose B small enough such that the ball around c does not contain ∞ . Then any circle inside B that passes through ∞ (i.e. a line) maps to a circle inside the ball around c which cannot be a line as it does not pass through ∞ .

Now note that if $S(z) = \frac{az+b}{cz+d}$, then $S(\infty) = \infty$ iff c = 0. But if c = 0, we know that $d \neq 0$ as $ad - bc \neq 0$. So just to make our notation simpler, we replace $\frac{a}{d}$ by a and $\frac{b}{d}$ by b. So we can write S(z) = az + b with $a \neq 0$.

(a) If S has at least 2 fixed points in \mathbb{C} , then it has at least 3 fixed points in \mathbb{C}_{∞} (including ∞) and hence it is the identity.

(b) Suppose it has 1 fixed point. Then S(w) = w for some $w \in \mathbb{C}$, i.e. (a-1)w+b=0. Now this has a unique solution iff $a \neq 1$. So S(z) = az + b has exactly one fixed point iff $a \neq 1$. (c) S doesn't have any fixed point if (a-1)z+b=0 has no solutions in \mathbb{C} . This happens iff a = 1 and $b \neq 0$, i.e. S is a translation.

Problem 3. Let $(X, d), (\Omega, p)$ be metric spaces, and $G \subset X, \Delta \subset \Omega$ open subsets. A map $f: G \to \Delta$ is called proper if $f^{-1}(K) \subset G$ is compact for every compact $K \in \Delta$. (The empty set is compact.) Suppose that $f: \overline{G} \to \overline{\Delta}$ is continuous and its restriction to G is a proper map $G \to \Delta$. Show that $f(\partial G) \subset \partial \Delta$.

Proof. If $\partial G = \emptyset$, we are done trivially. Suppose not. Let $x \in \partial G$. Suppose that y = f(x)and $y \notin \partial \Delta$. Choose a sequence $\{x_n\}$ in G converging to x. Then $f(x_n) \to y$. Also, $f(x_n) \in \Delta$ for all n. Let us denote by S the set $\{y, f(x_n) : n \geq 1\}$. Then S is compact and $S \subset \Delta$. Then $(f|_G)^{-1}(S)$ is also compact as $f|_G$ is proper. But $\{x_n\} \subset (f|_G)^{-1}(S)$, but $x \notin (f|_G)^{-1}(S)$ which means that it cannot be compact. So $f(x) \in \partial \Delta$. This completes the proof. \Box